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SYNOPSIS 

A new approach has been introduced to establish the optimum composition for all particles 
within a mixture or suspension to achieve the optimum packing fraction, p,,, and/or the 
minimum viscosity, 7. The derivation to obtain the optimum particle volume fraction as- 
sumed that a previously developed optimum composition for binary particles applied to 
any two particle volumes Vi and Vj in the mixture. The composition of the maximum 
packing fraction for a mixture of more than two particles was then assumed to be calculable 
from the optimized relationship of each separate binary pair of particle volumes Vi and V, 
in the mixture. This derived equation was successfully shown to predict the optimum par- 
ticle-to-particle composition of McGeary’s experimentally measured binary, tertiary, and 
quaternary mixtures. The difference between the calculated and measured volume fractions 
was no greater than 3.85% and, in most instances, was significantly less than 3.85%. The 
maximum packing fractions, pn , determined experimentally by McGeary, were also suc- 
cessfully predicted to better than 3.26%. Theoretical particle-to-particle volume fractions 
evaluated for an example pressure-agglomerated latex appeared to predict the particle-size 
distribution only within a narrow range of particle sizes. However, when the theoretical 
and experimental results were evaluated as a function of the number of particles for each 
particle diameter, it was apparent that the agglomerated distribution closely approximated 
the theoretical optimum distribution above 600 A. Agreement with theory below 600 A was 
unsatisfactory. The decrease in viscosity of the example agglomerated latex appeared to 
have been enhanced as the optimum theoretical particle-size distribution was approached. 
0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

Viscosity applications for liquids with suspended 
particles cross many disciplines. For example, the 
viscosity of spherical particle suspensions has been 
evaluated for synthetic rubber, l4 paint and coatings 
l a t e ~ e s , ~ , ~  milk,’ bitumen emulsions,’ and filled 
therm~plastics.~”~ An extensive survey of the vis- 
cosity-concentration literature was made by Rutgers 
in 1962.”*12 By comparing the experimental data 
with the equations, he concluded that the many lit- 
erature equations could be reduced to five useful 
ones. These primary equations each incorporated 
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some measure of suspension particles to pack effi- 
ciently as defined by a particle packing fraction, pn. 
More recently, it was shown13 that the primary vis- 
cosity concentration equations identified by Rutgers 
can be combined into one generalized viscosity con- 
centration equation. In a succeeding paper, l4 it was 
shown that combinations of binary particles go 
thorough a maximum packing fraction, pn, and that 
the minimum viscosity, q, for binary particle sus- 
pension blends can be predicted as a function the 
D5/D, ratio of average particle diameters. The max- 
imum value of the average particle-size ratio 0 5 / 0 1  

was shown by derivation to go through a maximum 
at a specific volume fraction composition for a binary 
mixture of particles. The location of this optimum 
binary composition was specified by the ratio of the 
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large to small particle diameters, R12. In the last 
article in this series, l5 it was shown that an optimum 
composition and minimum viscosity can also be 
found for combinations of two latexes, each with a 
broad particle-size distribution. The optimum pseu- 
dobinary volume blend of two broad distribution la- 
texes was found to occur at a specific composition l5 
that again depended on the evaluation of the opti- 
mum packing fraction, pn. However, the optimum 
particle-by-particle composition within a given latex 
or particle mixture that yields the optimum packing 
fraction for a mixture of more than two particle sizes 
was not addressed. Such an optimum composition 
should also yield the minimum viscosity for a sus- 
pension of these particles. The identification of this 
specific particle-by-particle composition for a mix- 
ture or suspension of more than two particle sizes 
is the subject of this article. 

The particle-by-particle composition that gives 
the maximum packing efficiency for a mixture of 
different particle sizes will apply equally well to both 
liquid suspensions as well as to dry mixtures of par- 
ticles. Several applications of dry blends of particles 
have industrial importance. The wide diversity in 
dry packing applications of particles includes the 
concrete industry, makers of quality ceramic ware 
and refractories, 16917 packed tower and bed hydrau- 
lics engineering, industrial handling and pack- 
ing,20 soil geology,21322 and the packing of uranium 
oxide in long tubes for the nuclear ind~stry. '~ 

Several experimental investigations 23-25 have re- 
vealed that the packing fraction of binary mixtures 
of spheres exhibits a maximum value that is a func- 
tion of the diameter ratio. Probably the most defin- 
itive experimental work on binary, tertiary, and 
quaternary packing of spherical particles was done 
by M~Geary.'~ Several authors26-28 attempted to an- 
alytically predict the optimum packing fractions 
found for these blends of spherical particles. These 
approaches attempted to describe the composition 
curves for these mixtures using different sets of 
equations for different parts of the composition 
cuwe even for binary mixtures. More recently, it 
was shown14 that the maximum packing fraction 
and the location of this maximum composition for 
McGeary's binary blends could be predicted using 
only one equation. This article will extend this anal- 
ysis to include the prediction of the optimum par- 
ticle-to-particle composition of McGeary's tertiary 
and quaternary mixtures. This method will then be 
extended to the prediction of the optimum particle- 
to-particle composition for an undefined number of 
particles in a dry mixture or a latex blend. 

THEORETICAL OPTIMUM PARTICLE-TO- 
PARTICLE VOLUME FRACTION FOR A 
TERTIARY MIXTURE 

McGearyZ3 found that the packing fraction for bi- 
nary mixtures of spherical particles goes through a 
maximum packing fraction as shown in Figure 1. 
McGeary's maximum binary packing fractions have 
been shown by this author l4 to be very successfully 
predicted using the following equation: 

(3 )  

( 4 )  

where 0, is the Xth average particle diameter; n, 
the number of different particle diameters in a batch 
combination; Ni , the number of particles of the ith 
particle diameter; Bi , the diameter of the ith particle 
size; a, a constant = .268; pn, the packing fraction; 
p,,lt, the ultimate packing fraction for a specific 
number of particle sizes; and pm, the monodisperse 
packing fraction. 

Utilizing this calculation procedure, the value of 
pn can be evaluated for any ratio 0 5 / 0 1 .  It can easily 
be shown that the maximum value of (on for a binary 
mixture occurs at the same composition in which 
the value of D5/D1 goes through a maximum. The 
maximum value of the 0 5 / 0 1  for a binary mixture 
of particles has been derived14 to occur at the fol- 
lowing large diameter particle volume fraction, fl : 

vR12 
K+1 f l  = 

and 

where R12 is the ratio of the large-particle diameter 
to the small-particle diameter; fl, the volume frac- 
tion of the large particle; Bl, the diameter of the 
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Figure 1 
to-small diameter particles (data of McGeary, Ref. 23 ). 

Selected binary particle packing fraction data sets for different ratios of large- 

large particle; and a,, the diameter of the small 
particle. 

If more than two particles are in a mixture, the 
optimum composition to give the maximum packing 
fraction can be calculated by separating the mixture 
into a series of paired volumes. For example, the 
volume of a mixture of three different particle sizes 
can be described as 

For the purpose of this analysis, the particle diam- 
eters in a mixture will be numbered such that 

With this definition, the volume fraction of the sec- 
ond largest particle in a tertiary mixture can be cal- 
culated as 

(9) 

These volumes can be separated into paired volumes 
of the type 

v1 + v2 = v T 1  (10) 

v1 + v3 = v T 2  (11) 

Note that each of the above paired volume equations 
has one common volume of particles, V,. Based on 
these definitions, then, the volume fraction, f 2 ,  can 
be obtained by combining eqs. ( 9 ) - ( 11 ) to give 

At this point, the following assumptions were made: 

The previously developed optimum volume 
fraction for binary particles described by eq. 
(5) was assumed to apply to any two particle 
volumes Vi and Vj in the mixture. 
The composition of the maximum packing 
fraction for a mixture of more than two particles 
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was assumed to be calculable from the opti- 
mized relationship of each separate binary pair 
of particle volumes Vi and Vj in the mixture. 

Using these assumptions, the optimum volume 
fractions of these paired volumes can be calculated 
as 

Taking the ratio of eqs. ( 13) and (15) gives 

Substituting eqs. (14) and (16) into eq. (12) and 
simplifying gives 

Further simplification is possible since 

Substituting eq. (18) into (17) and simplifying gives 

This illustrates the simplified equation to calculate 
the optimum particle-by-particle composition of a 
particle-size distribution to achieve the maximum 
packing fraction. The general form of this equation 
can be written as 

It can easily be shown that this result is also obtained 
for the other two volume fractions for the tertiary 
mixture described above. 

This same result can be also be obtained with two 
other sets of paired volumes for a tertiary compo- 
sition. It should be noted that each set of paired 
volumes equations is independent of the other sets 
since all required volume fraction information can 
be obtained from each set. For reference, the other 
possible paired volume sets for a tertiary composi- 
tion are the following: 

If V, is the common particle volume 

vl + vz = VT, 

vz + v3 = VT, 

(21 

(22 

Or if V3 is the common particle volume 

THEORETICAL OPTIMUM PARTICLE-TO- 
PARTICLE VOLUME FRACTION FOR 
A MIXTURE W I T H  A N  UNDEFINED 
NUMBER O F  PARTICLES 

In general, if there are n particles in a mixture, there 
will be n sets of paired volumes. In addition, each 
set of paired volumes will contain n - 1 paired vol- 
ume equations. It can easily be shown that an equa- 
tion similar to eq. (20) is obtained independent of 
which set of paired volume equations is used to make 
the volume fraction calculation. 

To show that this procedure applies to n particles 
in a mixture, a mixture of seven particles will be 
analyzed. For this example, there are seven sets of 
six paired particle volume equations. For this mix- 
ture, the set of equations where V2 is the common 
particle volume are as follows: 
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Solving for the volume fraction of the largest par- 
ticle, f l ,  gives 

Combining eqs. (32 ) , (33 ) , (34) ,  and (39) gives 

dRl2 

K+l+-+-+- 1 1 1 fl = 

vz ViG K (40)  

Vl 
fl = - 

VT 

(31)  
- Vl - v, + v, + v3 + v4 + v, + vs + v7 1 1 +-+- G\/R27 

Based on the definitions of eqs. (25)  - (30 ) ,  then, 
eq. (31)  can be written as This equation easily simplifies to 

Vl m f 1 -  - -=-  

i= 1 

The extension of this proof to n particles in a mix- 
ture is straightforward to obtain 

Solving for the volume ratio, Vl / v T 1 ,  using eq. ( 25 ) 
gives 

(33)  

i=l 

Eliminating V2 from eqs. (25)  and (26)  gives 
At this point, it is only necessary to show that the 
optimum volume fraction described by eq. (42) al- 
lows the regeneration of the primary binary pair as- 
sumptions used as the basis for its derivation. From 
eq. (42) ,  the ratio of any two optimum volume frac- 
tions fi and f i  in a mixture gives Further development can be obtained by noting that 

(35)  (43) 

Eliminating V, from eqs. ( 25) and (27)  gives For this generalized volume pair, then * =  (')( VRZ4 + 1 ) (36)  
vT1 & 

(45)  
and from eq. (27) ,  it can be shown that 

(37) and 

Combining eqs. (35) ,  (36 ) ,  and (37)  gives 

Thus, 

Using the same approach to the other ith compo- 
nents of eq. (32)  for i 2 4 also yields 

1 -- vi - (  - )( ) (39)  
vT1 6 
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Hence, it has been shown that the optimum binary 
assumption described by eq. (5) applies to all pos- 
sible binary pairs in a mixture of n particles if eq. 
(42) applies for all particles at the optimum com- 
position to give the maximum packing fraction. 

COMPARISON OF THEORETICAL VOLUME 
FRACTION PREDICTIONS WITH 
MCGEARY’S EXPERIMENTAL RESULTS 

McGeary 23 developed the experimental optimum 
composition for several binary, tertiary, and qua- 
ternary mixtures of spherical particles. Several op- 
timum compositions generated by M ~ G e a r y ~ ~  are 
summarized in Table I along with the diameters 
making up the particles in each of these mixtures. 
The predicted optimum compositions calculated us- 
ing eq. (42) for these diameter combinations are 
also included in Table I. Some observations indi- 
cated from the comparison of these theoretical and 
experimental results in Table I include the following: 

The volume fractions calcualted using eq. (42) 
agree very well with the optimum volume frac- 
tions determined experimentally by McGeary 
for binary, tertiary, and quaternary blends. 
The maximum difference between the calcu- 
lated and measured volume fractions was no 
greater than 3.85%. In most instances, the % 
difference between the theoretical and experi- 
mental results was significantly less than 
3.85%. 

Independent of the minimal difference between 
the theoretical and experimentally measured 
results for each blend, the trend of the predicted 
volume fractions between blends was consistent 
for all four compositions indicated in this table. 

EVALUATION OF THE D 5 / D 1  RATIOS OF 

COMPARISON OF PREDICTED AND 
EXPERIMENTALLY MEASURED 
PACKING FRACTIONS 

PARTICLE-SIZE AVERAGES AND THE 

The values of 0 5 / 0 1  in Table I were calculated by 
noting that the volume fraction, f l ,  can be described 
as 

C NiBg 
i=l 

A ratio of two volume fractions gives 

or 

Ni = N l ( f ) R : i  

Substituting eq. (50) into eqs. (3)  and (4 )  gives 
n 

C fiR?iB? 

C f iR?iBf 
i = l  

(51)  D5 = ‘zl  

Table I Comparison of Theoretical Predictions With McGeary’s Particle Composition Measurements 

Diameters, 
Di f i  f i  f i ,  Qn Qn Qn > 

i (in.) (Theory) (Measured) % Diff Ds/D1 R,,, Qm Qnult (Theory) (Measured) % Diff 

1 
2 
3 
4 

1 
2 
3 

1 
2 
3 

1 
2 

1 

0.5050 0.645 
0.0610 0.224 
0.0110 0.095 
0.0016 0.036 

0.5050 0.669 
0.0610 0.232 
0.0110 0.099 

0.1240 0.708 
0.0110 0.211 
0.0016 0.080 

0.5050 0.742 
0.0610 0.258 

0.5050 1.000 

0.607 3.76 
0.230 -0.60 
0.102 -0.69 
0.061 -2.47 288.7 315.6 0.589 0.971 0.971 0.951 2.05 

0.647 2.18 
0.244 -1.15 
0.109 -1.03 41.5 45.9 0.589 0.931 0.931 0.898 3.26 

0.670 3.85 
0.230 -1.90 
0.100 -1.95 72.1 77.5 0.589 0.931 0.931 0.900 3.06 

0.726 1.61 
0.274 -1.61 7.70 8.28 0.589 0.831 0.791 0.800 -0.91 

1.000 0.00 1.0 1.0 0.589 0.589 0.589 0.580 0.90 
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n 

C fiR:iai 
(52) 

i=l  
D1= n 

C fiR:i 
i=l 

The values of D5/D1 in Table I were then determined 
using eqs. (51) and (52). The ratio of the maximum 
and minimum diameter for each particle blend, R,,, 
are also included in this table. It has previously been 
shown by this author14 that the maximum value that 
can be obtained for 0 5 / 0 1  in any binary mixture is 
equal to the ratio of the large-to-small particle di- 
ameters. For mixtures with greater than two parti- 
cles, this analysis can easily be extended to show 
that the maximum possible value for D5/D1 is equal 
to the ratio of the maximum-diameter particle to 
the minimum-diameter particle, R,,, . As indicated 
in Table I, the values of D5/D1 ranged from 90.3 to 
93% of R,,, for the predicted compositions. Since 
the calculated values of D5/D1 were so close to the 
values of R,,, in Table I, the calculated volume frac- 
tions for these mixtures should be close to the op- 
timum composition for the maximum packing frac- 
tion based on previous ana1y~es.l~ 

The maximum packing fractions, pn, measured 
by McGearyZ3 for several particle blends have been 
included in Table I along with the maximum packing 
fractions predicted using eq. ( 1). For values of D5/ 
D1 greater than 40, it is easy to show that the max- 
imum packing fraction calculated using eq. ( 1 ) will 
essentially equal the ultimate packing fraction. The 
ultimate packing fractions, pnult, in Table I were 
calculated from eq. ( 2 )  using the monodisperse 
packing fraction ( pm = 589) as determined by Lee.27 
This monodisperse packing fraction was obtained 
for loose random packing from literature results ob- 
tained from five different sets of authors.27 Based 
on these assumptions, some observations involving 
the packing fraction results indicated in Table I in- 
clude the following: 

For three of the four calculated compositions, 
the calculated maximum packing fraction, pn, 
did indeed equal the ultimate packing fraction, 

All the maximum packing fractions, pn, deter- 
mined experimentally by McGeary were suc- 
cessfully predicted within 3.26% using eq. ( 1 ) .  

Pnult * 

APPLICATION OF MAXIMUM PACKING 
FRACTION, q,,, TO A SPECIFIC 
GENERALIZED SUSPENSION 
VISCOSITY EQUATION 

In an earlier article,13 this author showed that the 
primary equations identified by Rutgers 11,12 could 

be reduced to the following generalized viscosity- 
concentration equation: 

f o r a #  1 (53) 

For the case where a = 1, the resulting equation can 
be written as 

or 

( 5 5 )  

where q is the suspension viscosity; qo the viscosity 
of the suspending medium; [ q] , the intrinsic vis- 
cosity; a, the particle interaction coefficient; p, the 
suspension particle volume concentration; and pn , 
the particle packing fraction. 

As previously de~cribed,'~ this generalized sus- 
pension viscosity equation predicts the form of many 
suspension equations that have previously appeared 
in the literature. For example, by varying the particle 
interaction coefficient, u, the Arrhenius 
results when a = 0, the Kreiger-Dougherty equation4 
results when u = 1, and when u = 2, the Mooney 
equation results. Fractional values for the particle 
interaction coefficient were also found13 to be useful 
and perfectly acceptable when optimizing the em- 
pirical fit of the literature data of Vand and Eiler. 
Additional insight from such a data fit can also be 
obtained from the magnitude of both the particle 
interaction coefficient, a, and the packing fraction, 
pn. As the particle interaction coefficient, u, in- 
creases, the viscosity has been shown to have a sig- 
nificantly faster rate of viscosity increase as a func- 
tion of the suspension particle volume concentra- 
tion. 

Further insight into the characteristics of the in- 
teraction parameter, a, and the packing fraction, pn, 
can be obtained from the series expansion of the 
generalized suspension equation. Using a MacLaurin 
series expansion for eq. (53) gives 

u + l  
+ (;)( ,)p + - . .) ( 5 6 )  
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It is apparent that the first two terms are the 
E i n ~ t e i n ~ ~ , ~ '  limiting terms for all possible values 
for the particle interaction coefficient, u, and the 
packing fraction, p,, when [v] = 2.5. It has also 
been found that u and (P,, always occur as a paired 
ratio for second-order and higher expansion terms. 
Since these two parameters are paired in second- 
order and higher terms, if u = 0.0, then the packing 
fraction does not enter into the viscosity calculation. 
This suggests that when the particle interaction 
coefficient is zero that particle packing is not im- 
portant and that particles have minimum interfer- 
ence with each other. 

However, if u # 0.0 and u increases, it is easy to 
see that the viscosity, 7, will increase. Likewise, if 
the packing fraction, (P,,, increases, then the viscosity 
will decrease for the same particle interaction coef- 
ficient, u. 

n 
m 
aJ 
u I ._ 
c) 
L 

Ccl 
0 

OPTIMUM PARTICLE-TO-PARTICLE 
VOLUME FRACTIONS APPLIED T O  
A N  AGGLOMERATED LATEX 

The agglomeration of latexes is a process normally 
used to increase the average latex particle size from 
a smaller diameter to a larger diameter. Agglomer- 
ation is often preferred to the standard SBR la- 
tex emulsion process since typical emulsion 
p r o ~ e s s i n g ~ ~ , ~ '  yields a latex viscosity that becomes 
prohibitive at higher total solids as the particle size 
of a typical emulsion latex approaches 500-600 A. 
Two production techniques that have successfully 
agglomerated such a 500-600 A seed latex include 
mechanical pressure a g g l ~ m e r a t i o n ~ ~ - ~ ~  and chem- 
ical aggl~meration.~~-~' Each of these agglomeration 
processes reduces latex viscosity by generating a 
particle-size distribution much broader than the 
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Figure 2 Example agglomerated latex particle-diameter distribution. 
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original seed latex while increasing the average par- 

Does the particle-size distribution for these ag- 
glomerated latexes approach the optimum volume 
fractions predicted using eq. ( 42) ? An attempt was 
made to address this question: A particle-size dis- 
tribution from an example pressure agglomerated 
latex of the type described by Jones33 and R e e ~ ~ ~  is 
shown in Figure 2. This example agglomerated latex 
particle-size distribution was generated from micro- 
graphs and provided courtesy of General Electric 
Plastics. Using only the particle diameters of this 
latex, the optimum particle-to-particle volume frac- 
tions can be obtained using eq. (42) ,  These theo- 
retical volume fractions are shown in Figure 3 along 

ticle size.33,34,37,38 
of the experimental and theoretical results appear 
to agree only within a narrow range of particle sizes 
in this figure. However, if these results are evaluated 
as a function of the number of particles for each 
particle diameter using eq. (50), then these particle- 
size distributions can be compared more directly as 
shown in Figure 4. This figure indicates agreement 
is approached above 600 A, but poor agreement is 
obtained below 600 A. By replotting the data in Fig- 
ure 4 at  a different scale in Figure 5, the agglomer- 
ated distribution indeed appears to approach the 
theoretical optimum distribution above 600 A. The 
new particles at diameters larger than 600 A appear 
to have been generated at the expense of particles 
below 600 A. Jones33 and S ~ h l u e t e r ~ ~ , ~ ~  have also - - 

with those determined experimentally. Comparison described additional results indicating that 

0.20 I 

Theoretical .................. 

the 

0.00 
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Diameter, Di 
Figure 3 Volume fraction, fi , vs. Particle diameter, Di . 
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Figure 4 Theoretical particle-size distribution compared to measured agglomerated latex 
distribution. 

smaller particles do, in fact, participate in the ag- 
glomeration process to form the larger particles. The 
decrease in viscosity for this example of agglomer- 
ated latex appears to have been enhanced as the 
theoretical particle-size distribution predicated to 
give the optimum packing fraction was approached. 
This would be a satisfying result if it can be corrob- 
orated with further experimental analysis. However, 
it was not the intent of this article to establish this 
verification. The only intent was to show that ag- 
glomerated latexes do appear to approach this op- 
timum theoretical distribution to decrease latex vis- 
cosity. 

Some other interesting characteristics of the par- 
ticle-size distribution of this example agglomerated 
latex are summarized in Table 11. Since there were 
47 identified different particle diameters in this la- 
tex, the calculated ultimate packing fraction, p,,"~~, 
essentially reached its maximum value of 1.0. How- 
ever, for this latex, there was a significant difference 
between the calculated particle average ratios D5/ 
D1 and the ratio of the maximum- and minimum- 

particle diameters, R,,, For this latex, the ratios of 
D 5 / D 1  were less than 50% of R,,,. This resulted in 
the calculated packing fraction for the experimen- 
tally evaluated agglomerated latex being only pn 
= 2373 and the theoretical optimum packing fraction 
only pn = -936. This example illustrates that both 
the number of different particle sizes in a mixture 
and the relative ratio of particle diameters in the 
mixture are important when an improvement in the 
packing fraction and/or a lowering of viscosity are 
desired. Simply increasing the number of particles 
in the mixture is not necessarily a sufficient way to 
increase the particle-size distribution and decrease 
latex viscosity. 

CONCLUDING REMARKS 

In a preceding article by this author, it was shown 
that the minimum viscosity, r ) ,  for binary particle 
suspension blends can be achieved when combina- 
tions of binary particles yield a maximum packing 
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fraction, (P,,. A subsequent article developed the 
methodology to achieve a maximum packing fraction 
and the resulting minimum viscosity for blends of 
two sets of particles each with a particle-size dis- 
tribution. A new approach has been introduced in 
this article to establish the optimum composition 
for all particles within a mixture to achieve the op- 
timum packing fraction. 

The derivation to obtain the optimum particle 
volume fraction assumed that the previously devel- 
oped optimum composition for binary particles ap- 
plies to any two particle volumes Vi and Vj in a 
mixture. The composition of the maximum packing 

fraction for a mixture of more than two particles 
was then assumed to be calculable from the opti- 
mized relationship of each separate binary pair of 
particle volumes Vi and Vj in the mixture. This de- 
rived equation was shown to predict the optimum 
particle-to-particle composition of McGeary’s ex- 
perimentally measured binary, tertiary, and quater- 
nary mixtures. The difference between the calculated 
and measured volume fractions was no greater than 
3.85% and, in most instances, was significantly less 
than 3.85%. The maximum packing fractions, p,,, 
determined experimentally by McGeary were also 
predicted to better than 3.26%. 

Table I1 Particle Analysis of an Example Agglomerated Latex 

Results 
Evaluated D1 D5 0 5 / 0 1  R,, No. Particles Qm Qnu~t Qn (Theory) 

Experimental 690 3713 5.38 19.6 47 0.589 1.000 0.873 
Theoretical 388 3067 7.90 19.6 47 0.589 1.000 0.936 
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Theoretical particle-to-particle volume fractions 
evaluated for an example pressure agglomerated la- 
tex appeared to predict the particle-size distribution 
only within a narrow range of particle sizes. How- 
ever, when the theoretical and experimental results 
were evaluated as a function of the number of par- 
ticles for each particle diameter, it was apparent that 
the agglomerated distribution closely approximated 
the theoretical optimum distribution above 600 A. 
Agreement with theory below 600 A was unsatis- 
factory. Apparently, a number of new particles at 
diameters larger than 600 A were generated at  the 
expense of particles below 600 A. The decrease in 
viscosity of the example agglomerated latex ap- 
peared to have been enhanced as the optimum theo- 
retical particle-size distribution was approached. No 
attempt was made in this study to verify this result 
with further experimentation. The only intent of 
this analysis was to show that agglomerated latexes 
do appear to approach this optimum theoretical dis- 
tribution to decrease latex viscosity. 

Permission to use the example agglomerated latex particle- 
size distribution used in this study, which was provided 
courtesy of General Electric Plastics, is gratefully ac- 
knowledged. 
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